蓝鸥尊龙凯时英国站的旗下品牌:
全国咨询电话:13693348049
您的位置: 尊龙凯时英国站 > 技术文章 > python算法:如何解决楼梯台阶问题

python算法:如何解决楼梯台阶问题 -尊龙凯时英国站

2018-09-14 蓝鸥
1976人 浏览:

python算法:如何解决楼梯台阶问题让我们考虑以下问题。

有一个有n个台阶的楼梯,你一次可以爬1或2个台阶。

给定n,编写一个函数,返回爬完楼梯的方式数量。步骤的顺序很重要。

例如,如果n是4,那么有5种方式:

  • 1,1,1,1

  • 2,1,1

  • 1,2,1

  • 1,1,2

  • 2,2

如果规定的不是一次只能爬1或2步,而是可以使用正整数x集合内的任意数字爬楼梯,那会怎么样?例如,如果x = {1,3,5},则表示一次爬升1,3或5阶楼梯。

python-staircase-problem.jpg

尊龙凯时英国站的解决方案

从一些测试案例开始总是好的做法。让我们从小的案例开始,看看能否找到某种规律。

  • n = 1,1种爬楼方式:[1]

  • n = 2,2种爬楼方式:[1,1],[2]

  • n = 3,3种爬楼方式:[1,2],[1,1,1],[2,1]

  • n = 4,5种爬楼方式:[1,1,2],[2,2],[1,2,1],[1,1,1,1],[2,1,1]

你有没有注意到什么?请看n = 3时,爬完3阶楼梯的方法数量是3,基于n = 1和n = 2。存在什么关系?

爬完n = 3的两种方法是首先达到n = 1,然后再往上爬2步,或达到n = 2再向上爬1步。所以 f(3) = f(2) f(1)。

这对n = 4是否成立呢?是的,这也是成立的。因为我们只能在达到第三个台阶然后再爬一步,或者在到了第二个台阶之后再爬两步这两种方式爬完4个台阶。所以f(4) = f(3) f(2)。

所以关系如下: f(n) = f(n – 1) f(n – 2),且f(1) = 1和f(2) = 2。这就是斐波那契数列。

def fibonacci(n):
    if n <= 1:        return 1
    return fibonacci(n - 1)   fibonacci(n - 2)

当然,这很慢(o(2^n))——我们要做很多重复的计算!通过迭代计算,我们可以更快:

def fibonacci(n):
    a, b = 1, 2
    for _ in range(n - 1):
        a, b = b, a   b    return a

现在,让我们尝试概括我们学到的东西,看看是否可以应用到从集合x中取步数这个要求下的爬楼梯。类似的推理告诉我们,如果x = {1,3,5},那么我们的算法应该是f(n) = f(n – 1) f(n – 3) f(n – 5)。如果n <0,那么我们应该返回0,因为我们不能爬负数。

def staircase(n, x):
    if n < 0:        return 0
    elif n == 0:        return 1
    elif n in x:        return 1   sum(staircase(n - x, x) for x in x if x < n)    
    else:        return sum(staircase(n - x, x) for x in x if x < n)

这也很慢(o(|x|^n)),因为也重复计算了。我们可以使用动态编程来加快速度。

每次的输入cache[i]将包含我们可以用集合x到达台阶i的方法的数量。然后,我们将使用与之前相同的递归从零开始构建数组:

def staircase(n, x):
    cache = [0 for _ in range(n   1)]
    cache[0] = 1
    for i in range(n   1):
        cache[i]  = sum(cache[i - x] for x in x if i - x > 0)
        cache[i]  = 1 if i in x else 0
    return cache[-1]

现在时间复杂度为o(n * |x|),空间复杂度为o(n)。


网站地图